28 de noviembre 2017

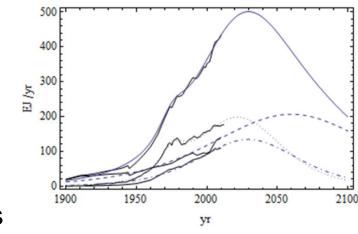
¿Es posible un futuro 100% renovable?

Antonio García-Olivares

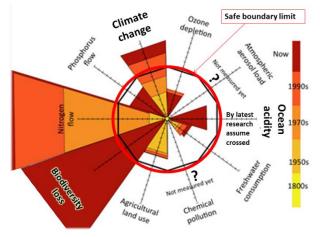
agolivares@icm.csic.es

ICM-CSIC

Dificultades para una transición

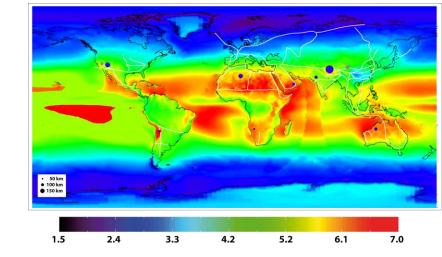

- 1. Tecnológicas
- 2. Ecológicas
 - Tamaño creciente de la población
 - Limitaciones recursos naturales
- 3. Políticas y sociales
 - Hábitos de consumo
 - Dinámica del sistema capitalista

La dinámica capitalista


- "Capitalismo verde" o "capitalismo sostenible" es un oxímoron
- R. Smith (Real-World Economics Review):
- 1) Los directivos corporativos no son responsables ante la sociedad sino ante sus accionistas
- 2) El primero que anteponga la sostenibilidad a los beneficios, pierde competitividad
- 3) Los intentos de "internalizar" los costes ecológicos fracasan porque disminuyen la competitividad y hacen cerrar empresas que generan empleo (carbón)
- 4) El beneficio es más fácil con crecimiento, y el crecimiento es eco-suicida, porque el mundo es finito
- 5) El crecimiento con desmaterialización absoluta no se observa
- 6) Las industrias esencialmente insostenibles deberían cerrar, y ello no lo van a hacer ellas mismas. Nacionalización necesaria
- 7) La cultura del despilfarro y el consumismo ha sido creada por el capitalismo y debe ser desmontada. Intervención política sobre la economía global
- 8) Tales iniciativas intervencionistas chocan con el neoliberalismo

Los límites ambientales

- Cénit del crudo: inminente (< 2020)
- Cénit de los c. fósiles: 2030
- Metales Cu, Li, Ni, Pt, cerca de su declive
- Crisis climática: reducirá productividad de los granos en 20-40% por 2100 (IPCC)
- Crisis agrícola:
 - □ Productividad de los granos → 7-8 t/ha mientras la población → 9700 millones en 2050
 - Cénit del fósforo esperado para 2040-2050
 - Degradación suelos:10 Mha de tierra abandonada / año
 - Agua: 1.700 millones personas viven de acuíferos que declinan (Gleeson et al. 2012)
- □ Pérdida de biodiversidad y nitratos →
 Ecosistemas muy frágiles. Puntos de noretorno de ecosistemas para 2025-2045
 (Barnosky et al. 2012)

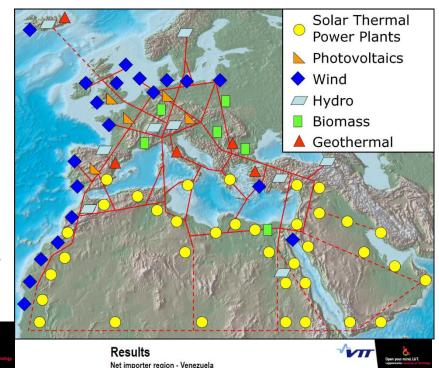

Planetary Boundaries

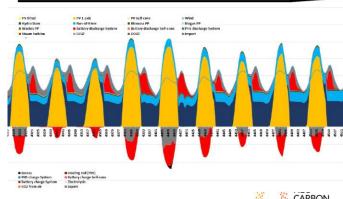
Entorno político

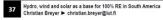
- Parada del crecimiento y tasas de beneficio
 - Beneficia a empresas eficientes, cooperativas y economía solidaria
 - Tentación de estrechar la simbiosis políticos-intereses corporativos: leyes pro-monopolios y abandono del 90%. Neo-feudalismo
- Triunfo o no de partidos alternativos al neo-liberalismo
 - Permitiría discutir los límites, economía estacionaria, decrecimiento
 - Facilitaría romper la simbiosis políticos-oligopolios
- Diseñar una economía que genere prosperidad sin crecimiento
 - Renta básica universal
 - Trabajo garantizado + Reparto del trabajo
 - Fomento de la economía real y no la financiera
 - Préstamos a interés 0 en actividades socialmente útiles.
 - Estímulo de la economía cooperativa y solidaria

Dificultad tecnológica

- Reestructuración enorme de transporte,
 agricultura, obras públicas, minería e industria.
- Reto superable si se planificara y coordinara globalmente, con producción cte
- Si se quiere mantener la industria actual, hay q eliminar la intermitencia → Interconexión continental. No hay soluciones nacionales.
- Super-grids uniendo CSP + PV + wind + hidro + geotérmica, olas, con centros de consumo
- Areas de círculos dibujados: 9.2TWe solares
- Podría bastar 5 TWe CPS+PV en desiertos, 4 TWe wind, 1 TWe PV residencial, 1 TW PV local industrial, 1 TWe hidro + geot + olas =12 TWe
- Input energético como el de economía del 2006
- 5% de los desiertos; 5% de las plataformas continentales no heladas y 2.5% de continentes no helados para eólica; 2 x 12.5% del terreno urbanizado para FV; un 30% más de centrales hidroeléctricas




Eliminación de la intermitencia

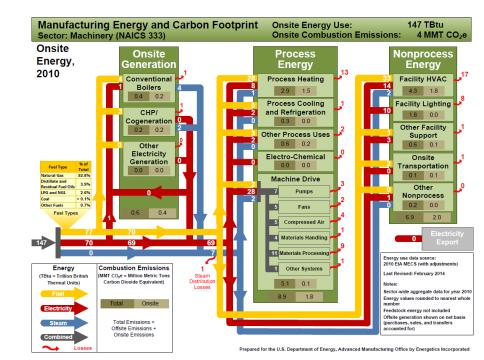

- Sistemas de almacenamiento eléctrico
 - Hidroeléctricas reversibles
 - CSP con sales fundidas
 - Electricidad a gas
 - Baterías
- Interconexión regional:
 - Redes inteligentes tamaño nacional con pequeñas conexiones continentales:
- Modelos horarios de Breyer:
 - Distintas combinaciones regionales de ER, almacenamiento e interconexión
 - Almacenamiento: 35%

Overview on World's Regions

Regions	LCOE region- wide	LCOE area-wide	Integrati on benefit **	storage s*	grids regions' trade*	Curtailm ent	PV prosum ers*	PV system	Wind *	Biomass *	Hydro*
	[€/MWh]	[€/MWh]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Northeast Asia	66	56	6.0%	7%	10%	5%	16.4%	35.4%	40.9%	2.9%	11.6%
Southeast Asia	67	64	9.5%	8%	3%	3%	7.2%	36.8%	22.0%	22.9%	7.6%
India/ SAARC	72	67	5.9%	22%	23%	3%	6.2%	43.5%	32.1%	10.9%	5.4%
Eurasia	63	53	23.2%	<1%	13%	3%	3.8%	9.9%	58.1%	13.0%	15.4%
Europe	73	64	8.7%	6%	17%	2%	12.3%	14.9%	55.0%	6.6%	9.3%
MENA	64	57		10%	11%	4%	2.4%	43.2%	51.8%	1.4%	0.6%
Sub-Saharan Africa	61	58	16.2%	4%	8%	4%	16.2%	34.1%	31.1%	7.8%	8.2%
South America	62	55	7.8%	5%	12%	5%	12.1%	28.0%	10.8%	28.0%	21.1%

Industria

- El oil es esencial en:
 - transporte
 - petroquímica
- El gas se usa para calentar
- Transporte y calentamto son electrificables
- No la reducción química con C o CH₄ ->
 - reducción H₂
 - C y CH₄ renovables


Table 8.22 | Energy input for the global industrial sector by industry and energy type, 2005 (in PJ).

Industry ¹	Coal and coal products	Crude, NGL and feedstocks	Petroleum products	Natural gas	Geothermal	Solar, wind, other	Combustible renewables and waste	Electricity	Heat	Total
Iron and steel	7910.3	0.2	635.0	2452.8	0.0	0.0	268.6	3259.0	494.3	15020.2
Chemical and petrochemical	1832.1	2.0	2550.3	4742.8	0.0	0.0	95.3	3570.5	1447.1	14240.1
Non-ferrous metals	486.1	0.0	326.2	605.4	0.0	0.0	4.9	2127.3	86.5	3636.3
Non-metallic minerals	5716.9	1.3	1520.9	2103.9	0.0	0.0	210.4	1346.8	105.7	11005.8
Transport equipment	150.6	0.0	126.3	422.8	0.0	0.0	0.6	589.7	136.8	1426.8
Machinery	416.2	0.4	472.9	879.0	0.0	0.0	2.5	2091.2	191.7	4054.0
Mining and quarrying	303.5	0.0	570.7	402.8	1.3	0.0	0.4	824.9	104.4	2208.0
Food and tobacco	794.2	1.5	1085.4	1367.7	0.2	0.0	1107.7	1284.1	356.7	5997.6
Paper, pulp and printing	794.9	0.0	601.1	1068.3	5.7	0.0	2069.0	1701.0	210.2	6450.3
Wood and wood products	87.1	0.3	140.4	121.0	0.0	0.0	414.6	348.6	213.3	1325.3
Construction	215.1	1.1	837.4	155.9	0.0	0.0	6.1	215.1	49.1	1479.9
Textile and leather	450.6	0.5	366.7	364.7	0.0	0.0	10.0	793.1	239.2	2224.8
Non-specified industry	2364.4	155.7	4214.8	3406.7	5.0	5.1	3322.6	4112.5	965.4	18,552.2
Total	21,522.1	162.9	13,448.2	18,093.8	12.3	5.2	7512.7	22,263.9	4600.4	87,621.3

Note: For the overall global industrial sector and all industry categories within it, there are no inputs of nuclear energy, or hydro, or heat production from non-specified combustion fuels. Units are petajoules (PJ), which is equal to 1015 Joule (see Chapter 1, Figure 1.3).

1 excludes feedstocks (non-energy use), see Chapter 1, Section 1.2.2.

Source: IEA, 2007a and 2007b

545

Carbón vegetal y biogas renovables

- La reducción de algunos metales se puede hacer con H₂
- Otros requerirán carbón vegetal renovable
- Nitratos y amonio: biogas renovable
- Productos petroquímicos:
- Oil → nafta → olefinas (etileno y propileno) y aromáticos (benceno, tolueno y xileno) → polímeros → plásticos, gomas...
- Carbón vegetal renov → olefinas
- Biogas → olefinas y aromáticos
- Potencial renovable de biogas y carbón vegetal da para el 40%
- Escasez de poliuretano, poliester, selladores, algunos tintes

End-use sector	Charcoal	Hydrogen	Biogas		
	(10 ³ t/yr) / (GW)	(10 ³ t/yr) / (GW)	(10 ³ t/yr) / (GW)		
Marine fuel cells		54 589 / 374			
Aviation		85 902 / 588			
Iron and steel		64 000 / 440			
Copper reduction		600 / 4			
Tin reduction	40	or 5 / 0.03			
Nickel reduction		81.8 / 0.6			
Lead reduction	710				
Zinc reduction	1600				
Ferro-alloys	48 000				
Graphite	2000*				
Ammonia		24 706 / 169	or 65 634		
High Value Chemicals	1 063 230		149 366		
TOTAL	1 115 580		215 000		
Global Potential	240 000 / 221	> 229884 / > 1576	215 000 / 320		
	to 300 000 / 276				
Percent of Global	372 to 465%	Not applicable	100%		
Potential					

TRE_{PC} = [
$$(1-\alpha)$$
 ($f_W/E_W + f_{PV}/E_{PV} + f_{CPS}/E_{CPS} + f_H/E_H$) + $\alpha \epsilon (f_W/E_W + f_{PV}/E_{PV} + f_{CPS}/E_{CPS} + f_H/E_H) + f_B/E_B$]⁻¹ = 14.4 α = 11%, ϵ = 2.5 (electrolisis + Sabatier) E_W = 20, E_{PV} = 8, E_{CSP} = 18, E_H = 84, E_B = 20

Reto del transporte

- 990 M coches, 130 M furgonetas, 56 M camiones, 670 M motos
- VE cuestan el doble
- Baterías: bajaron de \$1000/kWh en 2010 a \$350/kWh en 2015 → 5 años
- Flota actual con baterías + 10% de comerciales con pilas c. → 33% Li, 48% Ni, 59% Pt
- Precios y seguridad industrial → coche compartido; trenes; camiones sólo para municipios sin tren
- Navegación y aviación actuales → 160% y 150% más caros. Mantener precios → 35% tamaño actual
- Desglobalización del comercio

Conclusión

- Futura economía 100% renovable posible pero tendrá que ser estacionaria, 12 Twa/a
 - Empeñarse en el crecimiento → colapso
 - No colapso pre-industrial, 2 K, 9600 M →
 - 20 Twa/a, ΔR =30%/a (2020), 10%/a (2030)
 - Habría que hacer inversiones planificadas y coordinadas globalmente
- Extremadamente difícil bajo capitalismo
- Reducción 50%: vehículos privados, navegación, aviación
- Una economía como 2005 con sector petroquímico como el de 1985
- Industria sostenible → Reciclado de metales > 90%
- Agricultura sostenible → agricultura orgánica (P)
- Estrategia política:
 - Apoyar decrecimiento en OCDE, y la economía cooperativa y solidaria
 - Apoyar la instalación masiva de renovables
 - Movilizarse para nacionalizar y municipalizar las empresas energéticas
 - Movilizarse para impedir el secuestro del estado por los oligopolios

